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Letters
Highly regioselective direct halogenation: a simple and
efficient method for preparing 4-halomethyl-5-methyl-2-

aryl-1,3-thiazoles
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Abstract—An unprecedented C4-methyl regioselective halogenation of 4,5-dimethyl-2-aryl-1,3-thiazoles (1) has been accomplished.
The reaction of compound 1 with N-chlorosuccinimide and N-bromosuccinimide under mild conditions provides an efficient and
operationally simple method for obtaining 4-chloromethyl-5-methyl-2-aryl-1,3-thiazoles (2) and 4-bromomethyl-5-methyl-2-aryl-
1,3-thiazoles (3), respectively, in good yields without the formation of 4-methyl-5-halomethyl regioisomers.
� 2003 Elsevier Ltd. All rights reserved.
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Scheme 1. Conventional method for preparing 2 and 3.
Substituted 1,3-thiazoles (also known simply as thia-
zoles) are ubiquitous structural motifs found in com-
pounds of biological interest. As a result, a number of
methods have been developed to synthesize these com-
pounds.1;2 Despite the accessibility of these methods, the
ability to approach certain specific synthetic paths is
limited and requires the design of novel synthetic strat-
egies. Particular examples of these are 4-chloromethyl-
and 4-bromomethyl-5-methyl-2-arylthiazoles, which are
able to serve as key intermediates in the synthesis of
biologically interesting and pharmaceutically useful
molecules as dipeptidyl peptidase IV (DPP-IV) inhibi-
tors, agonists of peroxisome proliferation-activated
receptors (PPARs), subtype selective N-methyl-
DD-aspartate antagonists, glucose and lipid lowering
agents and antifungal agents.3

Previously, these compounds have been prepared via
ethyl 5-methyl-2-phenylthiazole-4-carboxylates,4 which
were synthesized by coupling reactions between thio-
benzamides and ethyl 3-bromo-4-methyl-2-oxobutano-
ate (Scheme 1).5 As a preliminary study, we have tried
some synthetic methods including a direct synthesis in-
volving a coupling reaction between thiobenzamide and
1,3-dibromo-2-butanone or a chlorination of 4,5-di-
methyl-2-phenylthiazole N-oxide via a Pummerer-type
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rearrangement.6 However, the former method failed
only to give an undesired isomer exclusively and the
latter method gave only a minor amount of desired
compound in three reaction sequences.

In our efforts aimed at the development of new methods
of synthesizing 4-chloromethyl- and 4-bromomethyl-5-
methyl-2-phenylthiazole, we were interested in a direct
halogenation of 4,5-dimethyl-2-phenylthiazole, which
can be readily prepared from inexpensive thiobenzamide
and 2-chlorobutanone,7 reacted with NCS or NBS as an
efficient and useful alternative to a known method
(Scheme 2).

Prior to our study, Mohanazadeh reported that a radical
halogenation of 4,5-dimethyl-2-phenylthiazole with
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NCS using a 200 W light bulb proceeded without
selectivity and with NBS occurred C5-methyl site regio-
selectively.8 On the other hand, it has been reported that
a bromination of 2,3-dimethylbenzofuran derivative
with NBS proceeds regioselectively depending on con-
ditions, which allow a selective formation of either
2-chloromethyl derivative (reflux in CCl4) or 3-chloro-
methyl derivative (an ambient temperature in CH2Cl2).

9

This prompted us to investigate a direct halogenation of
4,5-dimethyl-2-phenylthiazoles (1) under mild condi-
tions with NCS or NBS. In general, highly regioselective
reactions are required especially in pharmaceutical
fields, because even a small amount of regioisomers
cannot be removed easily from objective intermediates
or drug candidates by any means of purification quite
often due to similar physical properties. To the best of
our knowledge, there are no reported reactions pro-
ceeding at the C4-methyl site with high regioselectivity.
Herein we report a highly C4-methyl regioselective
synthesis of 4-chloromethyl-5-methyl-2-arylthiazoles (2)
and 4-bromomethyl-5-methyl-2-arylthiazoles (3) from 1.

Initial attempts were carried out using 1, NCS
(1.2 equiv) and 2,20-azobis(isobutyronitrile) (AIBN;
0.1 equiv) in acetonitrile at 60 �C. The reaction furnished
mono-chlorinated compound, that is 4-chloromethyl-5-
methyl-2-phenylthiazole (2) or 5-chloromethyl-4-methyl-
2-phenylthiazole (the regioisomer of 2). Surprisingly, the
chloride was confirmed as the desired 2 utilizing
the conventionally prepared 2 as an authentic sample
Table 1. Chlorination of 4,5-dimethyl-2-arylthiazoles

N

S 2) NCS (1 eq
1

Acetonitrile
1) Et3N (1equ

HCl

R

60 oC, 2h

, 2h60 o C

Entry Substratea (R¼ ) Yield

1 H 83

2 p-tBu 78

3 p-Me 89

4 p-MeO 57

5 3,4-Methylenedioxy 85

6 p-F 75

7 p-Cl 73

8 o-Cl 87

a Substrates were used as hydrochlorates.
b Yields refer to single runs and are given for isolated products.
c Regioselectivity was determined for isolated products by HPLC analysis (YM
d Regioselectivity in reaction mixtures determined by HPLC analysis (the sa
and 4-methyl-5-chloromethyl-2-phenylthiazole prepared
according to a known procedure10 as a comparison
sample by 1H NMR, 13C NMR11 and HPLC analyses.12

The reaction also proceeded without AIBN in the ab-
sence of light. The result suggests that the chlorination
does not proceed via a radical process. It is of note that
the regioselectivity of the reaction mixture and isolated
compound was considerably high as ascertained by the
HPLC analysis (>99% regioselectivity). The results show
that the chlorination exclusively proceeds at the C4-
methyl site and no 4-methyl-5-chloromethyl regioiso-
mers are obtained even in the reaction mixture.

Conveniently, 1ÆHCl could be isolated as a crystal13

directly from a reaction mixture of thiobenzamide and
2-chlorobutanone in 2-propanol (90% yield) (Scheme 3).
With 1ÆHCl, the reaction was carried out via the one-pot
neutralization (of HCl)––chlorination sequence using
1 equiv of NCS,14 furnished 215 in a good yield (83%),
directly isolated as a crystal by adding water to the re-
action mixture (Table 1, entry 1) (>99% purity detected
by HPLC analysis as an isolated compound without
further purification).16

On the basis of this finding, we extended the scope of the
chlorination with a variety of different substituted phenyl
groups. The reaction worked well with satisfactory
yields that ranged from 57% to 89% for each derivative
with phenyl groups bearing electron-donating groups
N

S

Cl

uiv.)
2
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(%)b Regioselectivity (%)c ;d

>99 (>99)

>99

>99 (>99)

>99 (>99)

>99 (>99)

>99

>99

>99 (>99)

C Pack-SIL A-002 column with 40:1 n-hexane/THF as mobile phase).

me conditions for isolated products) are shown in parentheses.



Figure 1. X-ray structures of 2 (Table 1, entry 1) and 3 (Table 2,

entry 1).

Table 2. Bromination of 4,5-dimethyl-2-arylthiazoles

N

S

Br
N

S
1

NBS (1 equiv.)

3
Acetonitrile
25 oCR R,2h

Entry Substratea (R¼ ) Yield (%)b Regioselectivity (%)c ;d

1 H 70 >99 (>99)

2 p-tBu 65 >99

3 p-Me 78 >99 (>99)

4 p-MeO 82 >99

5 3,4-Methylenedioxy 69 >99 (>99)

6 p-F 57 >99 (>99)

7 p-Cl 57 >99

8e o-Cl 53 ––

a Substrates were used as free form.
b Yields refer to single runs and are given for isolated products.
c Regioselectivity was determined for isolated products by HPLC analysis (YMC Pack-SIL A-002 column with 40:1 n-hexane/THF as mobile phase).
d Regioselectivity in reaction mixtures determined by HPLC analysis (the same conditions for isolated products) are shown in parentheses.
e Yield was given for the product purified by column chromatography due to a difficulty of crystallization from the reaction mixture. The structure

was determined by 1H NMR, 13C NMR and HPLC analyses.
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(entries 2–5), as well as electron-withdrawing groups
(entries 6–8).

Following the successful demonstration of the regio-
selective chlorination, we then proceeded to extend the
generality of the reaction to bromination with NBS,
with the hope that the reaction could proceed at the
C4-methyl site regioselectively. The first bromination
we carried out between 4,5-dimethyl-2-phenylthiazole
(1) and NBS (1 equiv) in acetonitrile at 25 �C, and gave
a 70% yield of 3 successfully, isolated directly as a
crystal by adding water to the reaction mixture (Table
2, entry 1).17 The regioselectivity of the reaction mix-
ture and the isolated product were determined by
HPLC analysis (methods and conditions used were the
same as for the chlorination; a >99% regioselectivity
were ascertained) and 1H and 13C NMR by an
authentic sample of 3 and a comparison sample of the
regioisomer, as well.18

To examine the generality of this reaction further, we
proceeded to study a variety of different substituted
phenyl groups. The results are shown in Table 2.
Though the reactions proceeded at a lower temperature
(25 �C) than the chlorination, almost the same reactivity
trends as the chlorination case were observed. The re-
actions afforded the desired 3 with yields from 53% to
82%. In addition, bromine can also be used instead of
NBS, however the yield (30%) is much lower than with
NBS, as determined by 1H NMR due to the low con-
version and formation of various unknown by-products.

The structures of 2 (Table 1, entry 1) and 3 (Table 2,
entry 1) were unambiguously confirmed by X-ray crys-
tallography (Fig. 1).19

We have not determined the source of this C4-methyl
selectivity and the difference of regioselectivity depend-
ing on the reaction conditions. One possibility is that the
reaction might proceed with a mechanism via a Pum-
merer-type rearrangement20;21 under the mild reaction
condition (Scheme 4).

In summary, we have developed a highly regioselective
and efficient method that allows for synthesis of 4-
chloromethyl-5-methyl-2-arylthiazoles (2) and 4-bromo-
methyl-5-methyl-2-arylthiazoles (3) utilizing the
readily prepared 4,5-dimethyl-2-arylthiazoles (1) from
thiobenzamides and 2-chlorobutanone. This facile
process involves no complicated operation. Further
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application of these methodologies to other substrates
such as oxazoles is under investigation in the laboratory.
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